
• Similarity is a fundamental construct in human cognition.
• Human-perceived similarity has been studied extensively and 

has been leveraged in applications such as image retrieval and 
human-in-the-loop categorization.  

• Recent studies in computer vision has shown that deep-
feature-based similarity metrics correlate well with perceptual 
judgments of image similarity. For example, see 

Seeing Eye to AI? Applying Deep-Feature-Based  
Similarity Metrics to Information Visualization

The success of these applications in computer vision rasies an 
interesting question: 

🤔 Can similar approaches be effectively 
applied in the domain of information 

visualization? 

1. We implement a domain-independent transfer-learning 
technique from computer vision to information visualization.

2. We extend prior work on deep-feature-based similarity 
metrics using weights trained on Stylized ImageNet, a 
modified ImageNet-1K dataset where images are artistically 
stylized while presering their original content and labels. 

3.  We conceptually replicate two prior experiments: 
1. Scatterplot experiment: When using certain deep-

learning networks, DF-based similarity metrics achieve 
better clustering alignment with human judgments of 
scatterplot similarity than traditional computer vision 
metrics whose parameters are gradient-descent-tuned on 
the same set of scatterplots and human judgments.

2. Visual channel experiment: For visual channels like 
color and shape, DF-based metrics struggle to capture what 
humans perceive as similar. However, they perform well 
when assessing the visual channel of size. 
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METHODS

RESULTS: SCATTERPLOT SIMILARITY (VERAS & COLLINS 2019)
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RESULTS: VISUAL CHANNEL SIMILARITY (DEMIRALP ET AL. 2016)
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DISCUSSIONS & FUTURE WORK

• Performance is consistent across neural network architectures 
but varies with pre-trained weight complexity. 

• When judging multi-channel visual stimuli, participants 
prioritize color before size similarity. Such perceptual 
hierarchies are not captured by DF-based similarity metrics. 

• Different similarity judgment tasks impose varying cognitive 
constraints, which are then encoded in different outcome 
variables and turned into different inferred representations. 
We need to think more about ways to model similarity.  

• Nevertheless, DF-based metrics show promise for pre-
screening visualization designs before costly human studies. 

CONCLUSIONS
• We explore DF-based similarity metrics for information 

visualization through replicating two well-established prior 
studies.

• Deep features trained on diverse, large-scale natural images 
(e.g., ImageNet-1k) transfer remarkably well to visualizations 
like scatterplots, where spatial distribution is key. 

• Limitations emerge when applying deep features to abstract 
visual primitives (glyph shapes, colors), likely because such 
judgments extend beyond purely perceptual processes.
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Given two images                                  and a network        , the 
“perceptual” distance  between x and y is the weighted sum 
of squared differences between feature activations of      and     
across multiple layers and spatial positions. Formally, 

where         is the set of feature extraction layers in network        , 
                                    are the unit-normalized deep feature maps 
extracted by        at layer   , and vector                      is a channel-
wise scaling vector for the difference between unit-normalized 
feature maps      and       at spatial location            . 
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For simple visual stimuli without 
complex patterns or textures, the 
feature map difference primarily reflects 
how well the stimuli spatially align/
structurally correspond 👉

Patches were taken from Zhang et al. 


